103 views 6 mins

Por que é importante organizar dados de uma empresa

em Destaques
quarta-feira, 19 de outubro de 2022

A dificuldade no gerenciamento de dados estruturados está fazendo com que informações valiosas, que geralmente estão disponíveis após o armazenamento, passem despercebidas. Nos últimos anos, as empresas desenvolveram formas muito bem-sucedidas e rápidas de adquiri-los.

O problema ocorre no momento de “tratar” esses dados. “O que não temos, muitas vezes, é a habilidade para fazer a descoberta e tratar os dados na mesma velocidade com que eles são coletados”, explica a sócia da EY em Data e Analytics, Telma Luchetta.

“O desconhecimento dos dados coletados implica em ausência de novos insights sobre estratégia e produtos de negócios ou dados’, completa. Pesquisas apontam que, nos próximos dois anos, a criação de dados globais deverá crescer para mais de 180 zettabytes (um trilhão de gigabytes).

Mas a questão é: como os negócios podem acompanhar e trabalhar com esse volume de informações De acordo com o relatório global Opportunities Analysis da EY, a grande maioria das empresas de grande porte menciona a informação como um ativo crucial. “Além disso defende que a monetização de dados possibilitará aumentar significativamente suas receitas – em função da criação de novos produtos que inovam o portifólio atual de produtos”, afirma Telma.

Ao que se refere ao mercado brasileiro, os serviços de dados e analytics estão cada vez mais presentes no portfólio de grandes empresas e só tendem a crescer. Com o surgimento de novas tecnologias – como computação em nuvem, Internet das Coisas (IoT), ciência de dados e aprendizado de máquina -, oportunidades ilimitadas de aplicação e melhorias foram criadas, impulsionando o mercado junto com uma alta demanda por profissionais especializados, como cientistas, engenheiros e analistas de dados.

Mas Telma alerta: não basta apenas possuir números, é preciso saber de onde eles vêm, compreender o que eles significam e, a partir daí, buscar novos insights para novas ações e tomadas de decisões.

De acordo com a especialista, no cenário atual, onde há necessidades como maior volume de transformações digitais, transações em real time, menor timing go to market, multichannel e ofertas cada vez mais personalizadas, surgem várias possibilidades de aplicação associadas ao uso dos dados como: monetização, open finance, metaverso, criptomoedas, market place e super apps.

“Atualmente, a dificuldade no armazenamento não é mais uma questão. É fato que a velocidade de coleta de dados é muito diferente da velocidade da descoberta e documentação dos dados. Com a emergente Modern Data Stack, uma nova abordagem para integração de dados, os dados serão produtizados e mais direcionados ao negócio”, afirma. Por isso, negócio e dados precisam andar lado a lado.

“Dados não terão consumidores se não forem organizados. Produto requer refinamento e curadoria. Por melhor que seja o algoritmo, é necessário dados confiáveis e direcionamento.”

. Silos de dados – De acordo com Telma, diante de uma imensidão de dados disponíveis às organizações, o small data, associado a novas tendências de descentralização de dados – em silos de produtos – poderia ser um viabilizador para execução de ações de curto e médio prazos.

“Mas vale lembrar que a gestão é unificada, não o armazenamento real, que permanece distribuído. A descentralização possibilita vantagens para rápida criação, manutenção e disponibilização de produto de dados por meio da sua arquitetura distribuída em domínios de negócio”.

Uma vez que os dados estão distribuídos e as áreas de gestão estão atendendo de forma segmentada as áreas de negócio, fica mais fácil?analisá-los, identificar os mais relevantes e pensar em novos produtos idealizados e testados a partir dos dados monetizados.

. Monetização – O sucesso da monetização se dá por entender os dados, a sua localização, volume e qualidade, determinar usos viáveis, construir fundações robustas para garantir qualidade dos dados e desenvolver a estratégia e o modelo comercial.

“Os principais desafios para praticar esse conceito são o desconhecimento do potencial da monetização de dados, a visão sistêmica limitada dos potenciais usos de dados externos, a concorrência com iniciativas atreladas ao core business e especialização interna, além de necessidade de equipe especializada nos novos produtos, sem o viés do portifólio tradicional”, alerta (Agência EY).